Assignment 3 - (5pts)
EGN 3211 Engineering Analysis and Computation
Due by 11:59PM on July 13t

Recent advances in near field communication (NFC) has allowed for the development and widespread
use of new technology, such as RFID (Radio Frequency Identification). RFID is commonly used by gated
residential communities as a key to enter the development, the gym, and other secured common areas.
Additional RFID applications include hotel room keys, toll road transponders, shipment tracking, pet
identification, etc. The global RFID market has had substantial growth over the past few years going
from a $7 billion value industry in 2012 to almost a $9 billion one in 2014. A typical RFID system consists
of an active NFC transponder that retrieves data from a passive RFID tag.

NFC/RFID

% S |
d \. =3 @
13.56 MHz IR

reader
Tag/transponder

Electromagnetic field

A RFID reader uses electromagnetic induction to power a RFID tag.

NFC capable cell phones can transfer contact information, photos, and other data with another device
by simply placing them next to each other. Bluetooth enabled devices can use NFC to pair with one
another instead of having to enter a passphrase. Texas Instruments sells a dynamic NFC Type 4 Tag
called the RF430CL330H which makes use of the 430 MCU platform.

RsT — L— vee
| |
—_— NDEF —— vss
RF 430 CL 330 H | Memory |
| (SRAM) i VCORE
Processor Famil | :
430 MCU Platform| ! !
| |
Device Type SCLISO —— | AT
; . SDA/S| —+—| FCorSPI Froteesing Iso144438 | |
Device Designator MSF::SO RF
sck —L—] Interface (based) Interface |
i 1 ANT2
Wireless Technolo: SCMSITS L
| |
Lo }_ J(_____________ .
E0 E1 E2 INTO

Block diagram of the RF430CL330H

A dynamic tag allows for another device to update the identification buffer NDEF that gets transmitted
over the NFC channel. A MSP430G2553 could be used to set the value of NDEF using the SPI
communication protocol. The SPI protocol is synchronized using SCLK (Serial Clock) and provides a full-

duplex channel allowing for simultaneous communication in both directions by using the MOSI (Master
Out Slave In) and MISO (Master In Slave Out) bus. The SS (Slave Select) line is used by the SPI Master to
select which peripheral it is actively communicating with over the MOSI & MISO bus. The SPI Master will
set the SS line low to rotate the 8 bits in the SPI Master’s buffer into the SPI Slave’s buffer. This can be
implemented in hardware using two 8-bit shift registers to form a circular buffer. One form of SPI
captures data when the clock is 1 and updates the output buffer when the clock is 0.

SCLK
» MOSI SPI
& MiSO slave Master Slave
Master » 55
p— I Mermaory | ﬂ’ I Mermaory |
MOSI SPI
MISO Slave
= [o]1]2[af+]s]e]7] s JORBBOBGEEH
SCLK * MISO |
MOSI SPI
MISO Slave
55

Example SPI configuration between four devices (left) using the circular buffer (right).
1) Circular Buffer Simulation (filename: circularBuffer.c)

Write a C program to simulate the circular buffer used by the SPI protocol. The global unsigned char
variables SCLK, masterShiftRegister, slaveShiftRegister, MISO and MOSI must be used to represent the
serial clock, master device’s 8-bit shift register, slave device’s 8-bit shift register, the value of the last bit
in the slave’s register, and the value of the last bit in the master’s register respectively. Your program
must prompt the user to enter the initial values of the master and slave shift registers and the number
of clock transitions to simulate. The main function calls simulateCommunication starts with SCLK at 1
(HIGH) and simulates the SPI communication by executing the onClockChangeEvent followed by flipping
the SCLK for numClockTransitions times. The onClockChangeEvent should update the MISO and MOSI
variables when the SCLK is 1 and should update the masterShiftRegister and slaveShiftRegisterare
variables when SLCK is 0. Finally, the program should print a summary of the shift registers, MISO, and
MOSI after the simulation ends as unsigned 8 bit binary values.

Mandatory global variables and simulateCommunication function:

unsigned char SCLK, masterShiftRegister, slaveShiftRegister, MISO, MOSI;

void simulateCommunication(unsigned int numClockTransitions)

{
SCLK = 1;
while(numClockTransitions --)
{

onClockChangeEvent();
SCLK "= 0x01;

Example simulation using 65, 37, and 3 for the SPI master buffer, SPI slave buffer, and clock transitions:

0 Cycles: masterBuffer > 01000001 slaveBuffer - 00100101 MOSI > 1 MISO 2> 1
1 Cycles: masterBuffer 2 01000001 slaveBuffer 2 00100101 MOSI > 1 MISO > 1
2 Cycles: masterBuffer > 10100000 slaveBuffer - 10010010 MOSI 2> 1 MISO 2> 1
3 Cycles: masterBuffer > 10100000 slaveBuffer - 10010010 MOSI > 0 MISO 2> 0

Sample output screenshot:

Please enter the 8-bit value for the SPI master buffer:
65

Please enter the 8-bit value for the SPI slave buffer:
37

Please enter the number of clock transitions:

3

After the simulation:

The value of the master buffer: 10100000
The value of the slave buffer: 10010010
The value of MOSI: ©

The value of MISO: ©

end

2) RFID Passphrase Encryption (filename: encryption.c)

Most RFID tags store and transmit encrypted data to prevent easy interception of passphrases. This
means that our MSP430G2553 must encrypt all data prior to updating the RF430CL330H.

Write a C program that implements a simple encryption algorithm built using an 8-bit shared key. The
key will be known by the sender and receiver prior to transmission and must have six 1-bits and two 0-
bits. Suppose that every 8-bit frame contains 6 data bits and 2 parity bits. The encryption algorithm will
build frames according to the 8-bit shared key where the 6 1-bits correspond to the 6 data bits from left
to right and the 2 0-bits are determined by the data bits.

- The first 0-bit location in the shared key is 1 if there are an odd number of 1-bits in the first 3 of
6 data bits and 0 if there are an even number of 1-bits. (from left to right)

- The second 0-bit location in the shared key is 1 if there are an even number of 1-bits in the
remaining 3 data bits and 0 if there are an odd number of 1-bits. (from left to right)

Your program must prompt the user to enter a string with at most 10 characters and the hexadecimal
value of the 8-bit shared key. The characters are then parsed into the 8-bit frames to be transmitted
and stored by the RFID tag. If there are fewer than 6 data bits in the last frame then the appropriate
number of 0’s are appended onto to the right of the last digit (see example and sample output). The
program should print the binary values of every 8-bit frame before exiting.

Example encryption of the string “go” using the shared key EE15(11101110,):

‘g > ‘0’ 2 01101111 (ASCIl values of the characters ‘g’ and ‘0’)
“go” 2> 01101111 > 110110 (remaining bits in the last frame are set to 0)
Frame; 2> Frame, = 11001101 Frames; 2> (after adding the parity bits)

Sample output screenshot:

[Please enter a string of up to 10 characters:go
Please enter the 8-bit shared encryption key as a hexadecimal value:EE

The following frames were generated after encryption:

Frame 1: 91100010
Frame 2: 11001101
Frame 3: 11111000

RFID Reference: http://www.ti.com/product/RF430CL330H

Guidelines for receiving full credit:

Write readable code with descriptive comments, appropriate line spacing and white space, and
meaningful identifiers for variables and functions.

Make your output look similar to the sample output and allow your program to exit. Do not prevent
termination because of statements like system(“pause”), getchar(), or anything else that will require
further interaction from the user.

Submit C programs with the name stated in the problem description and that can be compiled following
the C99 standard. Do not use features introduced in the C11 standard.

Do your own work, a grade of 0 will be given if cheating is suspected.

http://www.ti.com/product/RF430CL330H

